Question 793 option, hedging, delta hedging, gamma hedging, gamma, Black-Scholes-Merton option pricing
A bank buys 1000 European put options on a $10 non-dividend paying stock at a strike of $12. The bank wishes to hedge this exposure. The bank can trade the underlying stocks and European call options with a strike price of 7 on the same stock with the same maturity. Details of the call and put options are given in the table below. Each call and put option is on a single stock.
European Options on a Non-dividend Paying Stock | |||
Description | Symbol | Put Values | Call Values |
Spot price ($) | S0 | 10 | 10 |
Strike price ($) | KT | 12 | 7 |
Risk free cont. comp. rate (pa) | r | 0.05 | 0.05 |
Standard deviation of the stock's cont. comp. returns (pa) | σ | 0.4 | 0.4 |
Option maturity (years) | T | 1 | 1 |
Option price ($) | p0 or c0 | 2.495350486 | 3.601466138 |
N[d1] | ∂c/∂S | 0.888138405 | |
N[d2] | N[d2] | 0.792946442 | |
−N[−d1] | ∂p/∂S | -0.552034778 | |
N[−d2] | N[−d2] | 0.207053558 | |
Gamma | Γ=∂2c/∂S2 or ∂2p/∂S2 | 0.098885989 | 0.047577422 |
Theta | Θ=∂c/∂T or ∂p/∂T | 0.348152078 | 0.672379961 |
Which of the following statements is NOT correct?
Question 956 option, Black-Scholes-Merton option pricing, delta hedging, hedging
A bank sells a European call option on a non-dividend paying stock and delta hedges on a daily basis. Below is the result of their hedging, with columns representing consecutive days. Assume that there are 365 days per year and interest is paid daily in arrears.
Delta Hedging a Short Call using Stocks and Debt | |||||||
Description | Symbol | Days to maturity (T in days) | |||||
60 | 59 | 58 | 57 | 56 | 55 | ||
Spot price ($) | S | 10000 | 10125 | 9800 | 9675 | 10000 | 10000 |
Strike price ($) | K | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 |
Risk free cont. comp. rate (pa) | r | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Standard deviation of the stock's cont. comp. returns (pa) | σ | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Option maturity (years) | T | 0.164384 | 0.161644 | 0.158904 | 0.156164 | 0.153425 | 0.150685 |
Delta | N[d1] = dc/dS | 0.552416 | 0.582351 | 0.501138 | 0.467885 | 0.550649 | 0.550197 |
Probability that S > K at maturity in risk neutral world | N[d2] | 0.487871 | 0.51878 | 0.437781 | 0.405685 | 0.488282 | 0.488387 |
Call option price ($) | c | 685.391158 | 750.26411 | 567.990995 | 501.487157 | 660.982878 | ? |
Stock investment value ($) | N[d1]*S | 5524.164129 | 5896.301781 | 4911.152036 | 4526.788065 | 5506.488143 | ? |
Borrowing which partly funds stock investment ($) | N[d2]*K/e^(r*T) | 4838.772971 | 5146.037671 | 4343.161041 | 4025.300909 | 4845.505265 | ? |
Interest expense from borrowing paid in arrears ($) | r*N[d2]*K/e^(r*T) | 0.662891 | 0.704985 | 0.594994 | 0.551449 | ? | |
Gain on stock ($) | N[d1]*(SNew - SOld) | 69.052052 | -189.264008 | -62.642245 | 152.062648 | ? | |
Gain on short call option ($) | -1*(cNew - cOld) | -64.872952 | 182.273114 | 66.503839 | -159.495721 | ? | |
Net gain ($) | Gains - InterestExpense | 3.516209 | -7.695878 | 3.266599 | -7.984522 | ? | |
Gamma | Γ = d^2c/dS^2 | 0.000244 | 0.00024 | 0.000255 | 0.00026 | 0.000253 | 0.000255 |
Theta | θ = dc/dT | 2196.873429 | 2227.881353 | 2182.174706 | 2151.539751 | 2266.589184 | 2285.1895 |
In the last column when there are 55 days left to maturity there are missing values. Which of the following statements about those missing values is NOT correct?